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Abstract. A Monte Carlo random probability analysis developed at LLNL for heavy element research was
performed for recent experiments aimed at the synthesis of nuclides with Z ≥ 112 and N ≥ 170, to estimate
the probability that observed decay chains were a result of a random event. Low probabilities (< 10−4%
for most decay chains) were found.

PACS. 27.90.+b Properties of nuclei A ≥ 220 – 02. Mathematical methods in physics

Since 1998, the Dubna-Livermore collaboration has per-
formed extensive and lengthy experiments at the JINR
U400 Cyclotron bombarding various actinide targets (238U,
242,244Pu, 243Am, 245,248Cm, and 249Cf) with 48Ca aimed
at producing isotopes of elements 112-118[1] (see Fig. 1).
The nuclides of interest, called evaporation residues (EVR)
are separated from un-reacted beam, transfer products
and other background reactions using the Dubna Gas Filled
Separator, and are implanted into a position-sensitive Si
detector array. Position-correlated decay events are ob-
served in this detector during the beam-on (or beam-off)
periods, which thus provides for a variable background
counting rate in the detectors during the ∼month-long ex-
periments. Because of the influence of the closed shells at
N = 184 and Z = 114, 120 or 126, the nuclides produced
typically alpha-decay one or more times, before the decay
sequence is terminated by a spontaneous fission (SF). Be-
cause of the low statistics involved in these experiments,
often just one or two interesting events per month, and
the long duration of the runs requiring stable operation of
the accelerator and detection equipment, it is extremely
important to understand the probability that the observed
decay sequence might be merely due to a random event.
Some estimates of these random probabilities [2] rely on
average counting rates within the detectors or within po-
sition pixels defined by the detector position resolution
for example, and thus are not able to consider variable
backgrounds or counting rates.

A Monte Carlo method for estimating random proba-
bilities was developed for these kind of experiments and
is discussed more thoroughly in [3]. This method inserts a

a Much of the support for work at LLNL was provided by the
U.S. Department of Energy under contract W-7405-Eng-48 and
for the work at JINR was through the Russian Federation for
Basic Research grant no. 04-02-17186.

fission event (could be extended to a random alpha-decay)
randomly in time and position into the actual data, and
the same search algorithm used to locate decay chains
of interest in the experiments searches for correlations
with the random event, automatically including fluctuat-
ing background effects.

The results of the Monte Carlo random probability cal-
culations are shown in Table 1. It should be noted that no
attempt to eliminate decay chains on the basis of the semi-
empirical Geiger-Nuttal relationship has been made in this
study. Previously, many assumptions, such as which ran-
dom number generator was used and non-uniform distri-
butions of random fissions, were tested and found to have
negligible effect on the calculated random probabilities [3].
Additionally, for the first element 114 experiment, the ran-
dom probabilities calculated using this method were com-
pared with other methods and generally found to be higher
(thus more conservative). The search algorithm used in
this study does not take into account decay chains with
missing alpha-decays, decay chains with alpha-events in
the side detector only (ie., no position information), or
decay chains that span more than one file or run, which
is typically on the order of a few hours. The element 115
SF with a half life of around 30h was handled differently.
Generally, the parameters for the search algorithm were:
EVR energy between 7 and 14 MeV, event positions ±2
mm, alpha energies within a 1−2 MeV window around the
observed alpha-decay energies, SF energy > 130 MeV, and
maximum correlation times variable depending upon the
type of correlation (EVR-α, α-α, or α-SF). While count-
ing rates vary depending upon the particular experiment,
beam rates, detector positions and target thicknesses, typ-
ical counting rates within the ±2mm position resolution
for EVR-like events, for alpha-like events (beam on/beam
off), and SF-like events are ∼ 3 h−1, (∼ 1.5 h−1/∼ 0.7
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Fig. 1. Upper end of the Chart of Nuclides showing the isotopes synthesized within the last 6 years and their nuclear properties.

Table 1. Calculated probabilities that an observed decay se-
quence is due to random events for recent heavy element re-
actions. Note that because the overall decay chain duration is
short for many of these isotopes, more random fissions may be
required to ensure convergence of the method. These results
are for 10 − 100 million random fissions. In some cases, ran-
dom probabilities are presented for shorter decay chains than
actually observed (ie., decay chains with fewer alpha-decays),
which already results in small probabilities that the observed
decay chains are a result of randomness. Additionally, random
probabilities for EVR-SF events were also calculated for all
cases (not shown).

Initial isotope Production Reaction Random Probability
of decay chain (48Ca + ...) (%)

294118 249Cf 1.0 × 10−5 ∗
291116 245Cm 5.0 × 10−6 ∗

290116 245Cm 2.0 × 10−4 ∗
288115 243Am 1.5 × 10−4 ∗

289114 244Pu 0.172
288114 244Pu 8.6 × 10−4

287114 244Pu 8.5 × 10−5

287114 242Pu 4.1 × 10−4

286114 242Pu 6.0 × 10−5

∗For decay chain with fewer alpha-decays than observed.

h−1), and ∼ 0.01 h−1, respectively. For most chains, the
probability that the decay chain is due to a random event
is in the range of 10−4−10−5%, which is in general higher
(more conservative) than other methods. The distribution

of time differences between a randomly inserted fission
event and the nearest preceeding EVR is shown in Fig. 2
for the 48Ca + 245Cm experiment. Note the location of the
actual observed decay chains, much earlier in time than
what would be the average of the distribution of random
events. The position of the centroid can be estimated from
the EVR-like counting rate for the 48Ca + 245Cm experi-
ment of ∼ 0.0039 s−1. The time difference between EVRs
in a detector position, averaged over the whole detector,
is ∼ 300s – half this is the everage time interval between
an EVR and a randomly inserted fission, namely ∼ 150s,
which is consistent with the 244 s obtained from the Monte
Carlo method properly taking into account all deviations
from average.
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Fig. 2. Average time intervals between an implanted EVR and
a randomly inserted fission for the 48Ca + 245Cm experiment
and 1 million random fissions.




